BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples.

Icon for BioMed Central Icon for PubMed Central Related Articles

BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples.

BMC Bioinformatics. 2019 Jun 06;20(Suppl 11):282

Authors: Toosi H, Moeini A, Hajirasouliha I

Abstract
BACKGROUND: Intra-tumor heterogeneity is known to contribute to cancer complexity and drug resistance. Understanding the number of distinct subclones and the evolutionary relationships between them is scientifically and clinically very important and still a challenging problem.
RESULTS: In this paper, we present BAMSE (BAyesian Model Selection for tumor Evolution), a new probabilistic method for inferring subclonal history and lineage tree reconstruction of heterogeneous tumor samples. BAMSE uses somatic mutation read counts as input and can leverage multiple tumor samples accurately and efficiently. In the first step, possible clusterings of mutations into subclones are scored and a user defined number are selected for further analysis. In the next step, for each of these candidates, a list of trees describing the evolutionary relationships between the subclones is generated. These trees are sorted by their posterior probability. The posterior probability is calculated using a Bayesian model that integrates prior belief about the number of subclones, the composition of the tumor and the process of subclonal evolution. BAMSE also takes the sequencing error into account. We benchmarked BAMSE against state of the art software using simulated datasets.
CONCLUSIONS: In this work we developed a flexible and fast software to reconstruct the history of a tumor’s subclonal evolution using somatic mutation read counts across multiple samples. BAMSE software is implemented in Python and is available open source under GNU GLPv3 at https://github.com/HoseinT/BAMSE .

PMID: 31167637 [PubMed – in process]